Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures
نویسندگان
چکیده
Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, Communicated by Oliver Junge. K. Flaßkamp · S. Ober-Blöbaum ( ) Computational Dynamics and Optimal Control, Department of Mathematics, University of Paderborn, Paderborn, Germany e-mail: [email protected] K. Flaßkamp e-mail: [email protected] M. Kobilarov Control and Dynamical Systems, California Institute of Technology, Pasadena, USA e-mail: [email protected]
منابع مشابه
Distributed control of spatially invariant systems
We consider distributed parameter systems where the underlying dynamics are spatially invariant, and where the controls and measurements are spatially distributed. These systems arise in many applications such as the control of vehicular platoons, flow control, microelectromechanical systems (MEMS), smart structures, and systems described by partial differential equations with constant coeffici...
متن کاملOptimal control of switched systems by a modified pseudo spectral method
In the present paper, we develop a modified pseudospectral scheme for solving an optimal control problem which is governed by a switched dynamical system. Many real-world processes such as chemical processes, automotive systems and manufacturing processes can be modeled as such systems. For this purpose, we replace the problem with an alternative optimal control problem in which the switching t...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملSolving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملSolving two-point boundary value problems using generating functions: Theory and Applications to optimal control and the study of Hamiltonian dynamical systems
A methodology for solving two-point boundary value problems in phase space for Hamiltonian systems is presented. Using Hamilton-Jacobi theory in conjunction with the canonical transformation induced by the phase flow, we show that the generating functions for this transformation solve any two-point boundary value problem in phase space. Properties of the generating functions are exposed, we esp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 22 شماره
صفحات -
تاریخ انتشار 2012